19CS3304

Data Structures

Course Code	19CS3304	Year	II	Semester	Ι
Course Category	Program Core	Branch	CSE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Problem solving and Programming (19ES1102)
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes					
Upon su	Upon successful completion of the course, the student will be able to:					
CO1	CO1 Understand the basic concepts of algorithm complexities, Recursion and data structures.					
CO2	Apply suitable searching, sorting algorithms for various applications.	L3				
CO3	Apply appropriate linear data structures to solve problems.	L3				
CO4	Apply appropriate non-linear data structures to solve problems.	L3				

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)										ations			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3													
CO3	3								3	3				3
CO4	3													3

Course Content					
UNIT-1	Introduction: Algorithm Specification, Time complexity & space complexity and their notations. Recursion: What is Recursion, Why Recursion, Format of a Recursive function, Recursion and memory, Recursion Vs Iteration, Examples. Sorting and Searching:	CO1, CO2			

	Searching- Linear and Binary search algorithms,						
	Sorting- Bubble, Insertion, Selection, Merge, Quick sort algorithms.						
	Linked lists:						
UNIT-2	Single linked list, double linked list, circular linked list, and operations on CO						
	linked lists.						
	Stacks:						
	Definition, operations: array implementation, linked list implementation and						
UNIT-3	applications.	CO1, CO3					
UNII-3	Queues:						
	Definition, operations: array implementation, linked list implementation and	ıd					
	applications, Circular Queue.						
	Trees:						
	Introduction- Terminology, representation of trees, binary trees abstract data						
UNIT-4	type, Properties of binary trees, binary tree representation, binary tree						
	traversals In order, preorder, post order, Binary search trees Definition,	ı,					
	searching BST, insert into BST, delete from a BST, Height of a BST.						
	Graphs:						
UNIT-5	The Graph ADT Introduction, definition, graph representation, elementary CO1, CO4						
	graph operations BFS, DFS, Minimum Spanning Tree.						
	Learning Resources						
	1. Data Structures and Algorithm Analysis in C, Mark Allen Weiss, Second	Edition, 2002,					
	Pearson.						
	2. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest,						
Text Books	Clifford						
	Stein, Third Edition, 2010, PHI.						
	3. Data Structures and Algorithms Made Easy by Narasimha Karumanchi, 2020, CareerMonk						
	Publications.						
Reference	1. Fundamental of Data Structures in C, Horowitz, Sahani, Anderson-Freed, Second						
Books	Edition, 2008, Universities Press.						
	2. Classic Data Structures, Debasis Samantha, Second Edition, 2009, PHI.						
	1. http://cse.iitkgp.ac.in/pds/						
	2.http://cmpe.emu.edu.tr/bayram/courses/231/LectureNotesSlides/IQBAL/Lecture%20Notes						
e- Resources	3. https://www.geeksforgeeks.org/data-structures/						
& other	4. https://www.programiz.com/dsa						
digital	5. https://www.tutorialspoint.com/data_structures_algorithms/index.htm						
material	6. https://www.youtube.com/watch?v=zWg7U0OEAoE&list=PLBF3763AF2E1C572F						
	7. https://www.youtube.com/watch?v=S47aSEqm_0I&list=PLgj_V-						
	KxRKrxgFyOutPJpoLFBaQMOpK-						